Synthesis of Substituted Methyl Pyridazine-4-carboxylates via Cycloaddition of Diazomethane to 2,3-Disubstituted 2-Cyclopropenecarboxylic Acids

V. V. Razin, M. E. Yakovlev, K. V. Shataev, and S. I. Selivanov

St. Petersburg State University, Universitetskii pr. 26, St. Petersburg, 198904 Russia

Received September 18, 2003

Abstract—A three-step procedure has been developed for the synthesis of 3,5-disubstituted methyl pyridazine-4-carboxylates from accessible 2,3-disubstituted 2-cyclopropenecarboxylates. In the first step, cyclopropene derivatives react with diazomethane to give adducts having 2,3-diazabicyclo[3.1.1]hex-2-ene structure. The regio- and stereoselectivity of the cycloaddition has been determined. The second step is isomerization of the bicyclic adducts into 1,4-dihydropyridazine derivatives by the action of sodium methoxide. Finally, oxidation with potassium permanganate yields the target pyridazine-4-carboxylates.

The double bond in cyclopropene derivatives is much more reactive than in acyclic olefins due to high strain energy [1]. For example, cyclopropenes having no acceptor substituent at the double bond are readily involved in cycloaddition reactions with 1,3-dipoles and conjugated dienes [2], while analogous processes are not typical of nonactivated acyclic olefins. The strained three-membered ring in bicyclic adducts thus formed is capable of undergoing easy cleavage [3]. Therefore, cyclopropene derivatives may be regarded as synthons for introduction of a three-membered carbon fragment into cyclic molecules. In the present work we took advantage of this property of cyclopropene compounds to develop a new three-step procedure for the synthesis of substituted pyridazine-4-carboxylates (Scheme 1).

Each particular step of the proposed procedure, i.e., cycloaddition of diazomethane at the cyclopropene double bond [4, 5, 6], isomerization of substituted 2,3-diazabicyclo[3.1.0]hex-2-enes into 1,4-dihydropyridazine derivatives [7, 8], and oxidation of the latter to substituted pyridazines [9], has already been reported in the literature; however, the overall scheme of transition from 2-cyclopropenecarboxylates to pyridazine-4-carboxylates has not been implemented previously.

As initial compounds we used 2,3-disubstituted 2cyclopropenecarboxylic acids I-III which are available through carbene reaction of alkyl diazoacetate with the corresponding disubstituted acetylene [10]. The cycloaddition of diazomethane to compounds I-**III** occurs at a fairly low rate. In the presence of more than twofold excess of diazomethane, the process takes no less than 15 days in diethyl ether at 0 to -10° C. The progress of the reaction was monitored by TLC. In the reaction with 2,3-dimethyl-2-cyclopropenecarboxylic acid (I, R = R' = Me), the only product was diazabicyclohexene **IV**; from cyclopropene **II** (R = R' = Ph) we obtained two stereoisomeric diazabicyclohexenes Va and Vb at a ratio of 4:1; and unsymmetrically substituted cyclopropene III (R = Me, R' = Ph) gave rise to three isomeric diazabicyclohexenes: two stereoisomers VIa and VIb and regioisomer VII at a ratio of

Scheme 1.

 $\mathbf{I}, R = R' = Me; \mathbf{II}, R = R' = Ph; \mathbf{III}, R = Me, R' = Ph.$

1070-4280/04/4007-1027 © 2004 MAIK "Nauka/Interperiodica"

10:1:1. In all cases, the cycloaddition of diazomethane to cyclopropenes **I–III** was characterized by *exo*-stereoselectivity which decreased upon replacement of methyl substituents by phenyl groups. The regioselectivity observed in the addition of diazomethane to unsymmetrically substituted cyclopropene **III** is 11:1 in favor of the Auwers adduct.

The assumed diazabicyclohexene structure of compounds IV, Va, Vb, VIa, VIb, and VII satisfactorily agrees with their ¹H and ¹³C NMR spectra (Table 1). In the ¹H NMR spectra of these compounds we observed a characteristic two-proton signal at δ 5.0 ppm (AB system, CH₂); the ¹³C NMR spectra contained four signals from carbon atoms of the diazabicyclohexene skeleton, two of which were displaced to the region $\delta_{\rm C}$ 80–90 ppm due to effect of the neighboring azo group. The configuration of C^6 was established using 2D NOESY technique. The 6-H proton in IV, Va, VIa, and VII showed NOE with endo-4-H (but not with phenyl or methyl protons). By contrast, the corresponding proton in Vb and VIb showed NOE with protons of the phenyl and methyl groups but not with 4-H. It should be noted that compound Va was properly assigned in [4] the exo configuration without experimental substantiation. A specific feature of stereoisomers Va/Vb and VIa/Vb is difference between the chemical shifts of 6-H: In the spectra of exo isomers Va and VIa, the 6-H signal is displaced upfield by more than 1.2 ppm relative to the position

 $\mathbf{IV}, R = R' = Me; \mathbf{Va}, \mathbf{Vb}, R = R' = Ph; \mathbf{VIa}, \mathbf{VIb}, R = Ph, \\ R' = Me; \mathbf{VII}, R = Me, R' = Ph.$

of the corresponding signal in the spectra of *endo* isomers **Vb** and **VIb**.

The difference between regioisomers **VIa** and **VII** is seen most clearly by comparing their ¹³C NMR spectra: In the spectrum of **VII**, the C¹ signal is located 6.2 ppm upfield, while the C⁵ signal, 8.2 ppm downfield. This pattern is consistent with the positions of the corresponding signals in the ¹³C NMR spectra of compounds **IV** and **Va**. The difference in the chemical shifts of the methyl protons in the ¹H NMR spectra of regioisomeric adducts **VIa** and **VII** also conforms to the above assignment: in the spectrum of **VII**, the methyl proton signal appears 0.45 ppm downfield due to effect of the neighboring azo group.

The isomerization of diazabicyclohexenes **IV–VII** into substituted 1,4-dihydropyridazines was effected by the action of sodium methoxide in methanol. In all

Comp.	¹ H NMR spectrum, δ, ppm						¹³ C NMR spectrum, $\delta_{\rm C}$, ppm						
no.	$4-H^{a}$	6-H	CH ₃	OCH ₃	Ph	C^1	C^4	C ⁵	C ⁶	CH ₃	OCH ₃	C=O	Ph
IV	4.57	0.92 s	1.38 s, 1.92 s	3.69 s	_	78.8	87.5	32.1	35.0	8.2, 8.8	51.5	168.7	_
Va	5.09	1.71 s	_	3.53 s	7.19–7.27 (2H), 7.32–7.43 (6H), 7.58–7.67 (2H)	84.3	91.2	42.4	38.0	_	51.6	166.9	127.5, 127.8 (2C), 128.0, 128.2 (2C), 129.9 (2C), 130.0 (2C), 130.5, 132.1
Vb	5.27	3.23 s	_	3.71 s	7.05–7.11 (2H), 7.20–7.35 (8H)	85.1	84.7	44.6	31.1	_	51.9	166.6	127.0 (2C), 127.6, 128.0, 128.3 (2C), 128.5 (2C), 128.6 (2C), 132.3, 134.9
VIa	4.80	1.36 s	1.62 s	3.63 s	7.43 br.s	85.3	88.1	32.9	36.5	10.6	51.6	167.8	128.5 (2C), 128.7, 130.1, 130.3 (2C)
VIb	4.92	2.58 s	1.19 s	3.66 s	7.30–7.39 (2H), 7.39–7.50 (3H)	85.5	82.1	34.6	30.9	15.7	51.7	167.1	128.5 (2C), 128.6, 128.7 (2C), 132.2
VII	4.84	1.33 s	2.07 s	3.63 s	7.03–7.09 (2H), 7.30–7.36 (3H)	79.1	89.8	41.1	35.6	9.9	51.7	167.9	127.7, 128.6 (2C), 129.4 (2C), 133.1

Table 1. ¹H and ¹³C NMR spectra of 2,3-diazabicyclohexenes IV, Va, Vb, VIa, VIb, and VII

¹ The position of the center of the *AB* quartet is given, $J_{AB} = 19.5$ Hz (in all cases); $\Delta \delta_{AB} = 33, 42, 162, 15, 189$, and 60 Hz for compounds **IV**, **Va**, **Vb**, **VIa**, **VIb**, and **VII**, respectively.

VIII, XII, R = R' = Me; IX, XIII, R = R' = Ph; X, XIV, R = Ph, R' = Me; XI, XV, R = Ph, R' = Me.

cases, the reaction was fast and selective, and the products were formed in high yields. In keeping with published data [7, 8], we believe that the process involves formation of anionic intermediate **A** whose protonation yields substituted 1,4-dihydropyridazine. The latter may be presumed to have structure **B** (as a result of protonation of anion **A** at the nitrogen atom) or **C** (as a result of tautomeric transformation of 4,5-dihydropyridazine **D** arising from protonation of anion **A** at the carbon atom) (Scheme 2).

Analysis of the ¹H and ¹³C NMR spectra of 1,4-dihydropyridazines **VIII–XI** (Table 2) showed that only isomerization of diazabicyclohexene **IV** leads to formation of structure **C**. In all other cases, isomer **B** is formed. The **C** structure of compound **VIII** follows from the presence in the ¹H NMR spectrum of a doublet signal (J = 7 Hz) from protons of one methyl group. The spectrum of **X** contained a singlet from the methyl protons, indicating that this compound has structure **B**. Structure **B** of **IX**–**XI** is also confirmed by the presence of a one-proton singlet from 4-H. The other spectral parameters of compounds **VIII**–**XI** do not contradict the assumed structures. We believe that the isomerization of diazabicyclohexenes **IV**–**VII** by

Comp.	¹ H NMR spectrum, δ , ppm (<i>J</i> , Hz)							¹³ C NMR spectrum, $\delta_{\rm C}$, ppm						
no.	4-H	6-H	CH ₃	OCH ₃	NH	Ph	C^4	C^5	CH ₃	OCH ₃	С=О	Ph, C^3 , C^6		
VIII	3.33 d.q	6.77 d ^a	0.94 d	3.68 s	7.80 br.s	-	27.3	94.9	17.7,	50.6	167.6	143.6, 147.0		
	(4.8,	(4.8)	(7.1),						18.1					
	7.1)		2.23 \$											
IX	5.08 s	7.14 d	-	3.69 s	8.11 br.s	7.23–7.30 (1H),	41.4	103.1	-	52.4	171.2	124.4 (2C), 124.6, 126.0		
		(4.2)				7.51–7.57 (2H),						(2C), 120.2, 128.3 (2C), 128.5 (2C), 128.5 (2C), 128.7, 135.4, 128.7,		
						7.92–7.98 (2H)						136.0, 136.7		
X	4.40 s	6.47 br.s	1.87 s	3.70 s	b	7.32–7.42 (3H),	44.4	101.4	18.2	52.3	170.9	123.4, 125.4 (2C), 128.2		
						7.72–7.80 (2H)						(2C), 128.9, 134.3, 136.5		
XI	4.36 s	7.06 br.s	2.17 s	3.73 s	b	7.18–7.25 (1H),	45.1	102.1	22.4	52.4	170.4	124.0 (2C), 124.9, 126.0,		
						1.32–1.37 (4H)						128.5 (2C), 136.8, 137.9		

Table 2. ¹H and ¹³C NMR spectra of 1,4-dihydropyridazines VIII–XI

^a 3-H.

^b No NH signal was observed in the spectrum recorded in CDCl₃; in DMSO- d_6 , a one-proton broadened singlet appeared at δ 9.60 ppm in both cases.

Comp.		¹ H NMF	R spectrur	n, δ, ppm	¹³ C NMR spectrum, $\delta_{\rm C}$, ppm						
no.	6-H	-H CH ₃ O		OCH ₃ Ph		C ⁶	CH ₃	OCH ₃	C=O	Ph, C^4 , C^5	
XII	8.95 s	2.30 s, 2.66 s	3.94 s	_	155.1	151.7	16.3, 20.4	52.5	166.3	131.0, 133.8	
XIII	9.31 s	_	3.59 s	7.43–7.58 (8H), 7.68–7.78 (2H)	157.0	150.1	_	52.5	166.5	128.0 (2C), 128.4 (2C), 128.45 (2C), 128.5, 129.0 (2C), 129.55, 129.6, 133.8, 136.1, 136.7	
XIV	9.12 s	2.41 s	3.71 s	7.42–7.51 (3H), 7.65–7.72 (2H)	156.6	151.8	16.3	52.6	166.7	128.3 (2C), 128.5 (2C), 129.4, 130.9, 134.5, 136.3	
XV	9.18 s	2.79 s	3.75 s	7.37–7.45 (2H), 7.45–7.55 (3H)	155.5	149.8	20.3	52.6	166.6	127.9 (2C), 129.0 (2C), 129.6, 129.8, 134.0, 136.0	

Table 3. ¹H and ¹³C NMR spectra of pyridazine-4-carboxylates XII–XV

the action of sodium methoxide is a thermodynamically controlled process. In the case of dimethyl-substituted diazabicyclohexene IV, structure C of the isomerization product is thermodynamically more favorable, as compared to **B**, for the ester group in the former is attached to sp^2 -carbon atom and hence is conjugated with the endocyclic double bond. By contrast, diazabicyclohexenes VIa and VIb give rise to structure **B**, 1,4-dihydropiridazine **X**; in this case, structure **B** becomes thermodynamically more favorable due to stabilizing effect of the phenyl group in the imine fragment. Alternative structure C with the same substitution pattern should be destabilized for steric reasons (conjugation in the *cis*-cinnamate fragment is hindered). Structure **B** is also more favorable for isomerization products IX and XI (obtained from diazabicyclohexenes Va, Vb, VIa, and VIb), for it ensures conjugation between the phenyl substituent and endocyclic double bond; in the respective structure C, the phenyl group is forced out of conjugation with the dihydropyridazine ring.

1,4-Dihydropyridazines **VIII**–**XI** were oxidized with potassium permanganate in acetone. As a result, the corresponding pyridazine-4-carboxylates **XII**–**XV** were obtained in high yields. Their structure is convincingly confirmed by the ¹H and ¹³C NMR spectra (Table 3). Pyridazines **XII**–**XV** characteristically showed in the ¹H NMR spectra a singlet from the 6-H proton at δ 9.0 ppm. Regioisomeric compounds **XIV** and **XV** can be distinguished by the position of the methyl group signals in the ¹H and ¹³C NMR spectra: in the spectra of 3-methylpyridazine **XV**, these signals are displaced downfield by 0.38 and 4.0 ppm, respectively, relative to the corresponding signals of 5-methylpyridazine **XIV** (cf. [11]). Analogous differences in the positions of the methyl group signals were observed for compounds **X** and **XI** which are precursors of **XIV** and **XV**.

We conclude that the proposed three-step procedure for the synthesis of substituted pyridazine-4-carboxylates via cycloaddition of diazomethane to 2,3-disubstituted 2-cyclopropenecarboxylic acids is advantageous due to high yield in each step and accessibility of initial cyclopropene derivatives. Unfortunately, the first step in the procedure takes a long time, and it seems improbable to eliminate this drawback.

EXPERIMENTAL

The ¹H and ¹³C NMR spectra were recorded on a Bruker DPX-300 spectrometer (300.13 MHz for ¹H and 75.47 MHz for ¹³C) using CDCl₃ as solvent. 2D NOESY experiments were performed using the same instrument. The elemental compositions were determined on an HP-185B CHN-analyzer. Analytical thin-layer chromatography was performed on Silufol UV-254 plates. The products were separated and purified by column chromatography on silica gel L 40/100 μ m (Chemapol). 2,3-Disubstituted 2-cyclopropenecarboxylic acids I [12], II [13], and III [14] were synthesized by known methods. A solution of diazomethane in ether was distilled prior to use.

Methyl 1,5-dimethyl-2,3-diazabicyclo[3.1.0]hex-2-ene-*exo*-6-carboxylate (IV). To a solution of 0.56 g (5 mmol) of acid I in 10 ml of diethyl ether we added at 0°C 52 ml of a 0.58 M solution of diazomethane (30 mmol) in diethyl ether, and the mixture was kept for 14 days at 0°C in the dark. The solvent was removed under reduced pressure, and the residue was recrystallized from hexane. Yield 0.75 g (89%), mp 31°C, R_f 0.25 (hexane–diethyl ether, 1:1). Found, %: C 57.07; H 7.18; N 16.58. $C_8H_{12}N_2O_2$. Calculated, %: C 57.13; H 7.19; N 16.66. The ¹H NMR spectrum of the residue obtained by evaporation of the mother liquor contained no signals assignable to the *endo* isomer of **IV**, which indicated strict *exo*-stereoselectivity of the cycloaddition of diazomethane to 2,3-dimethyl-2-cyclopropenecarboxylic acid (**I**).

Reaction of diazomethane with 2,3-diphenyl-2cyclopropenecarboxylic acid (II). To a suspension of 0.95 g (4 mmol) of acid II in 25 ml of diethyl ether we added at 0°C 50 ml of a 0.55 M solution of diazomethane (27.5 mmol) in diethyl ether. The resulting solution was kept for 20 days at -10° C in the dark. The solvent was removed under reduced pressure to obtain 1.21 g of a substance which, according to the ¹H NMR data, was a mixture of compounds Va and Vb at a ratio of ~4:1. Crystallization from 15 ml of hexane-diethyl ether (1:1) (after prolonged cooling at -20°C) gave 0.86 g (73%) of methyl 1,5-diphenyl-2,3-diazabicyclo-[3.1.0]hex-2-ene-*exo*-6-carboxylate (Va), mp 121°C [4], $R_{\rm f}$ 0.29 (hexane-diethyl ether, 1:1). The mother liquor was evaporated under reduced pressure, and the viscous oily residue, 0.32 g, was dissolved in warm hexane. The solution was cooled, and a portion of crystals (a mixture of compounds Va and Vb) was separated. The solvent was removed from the mother liquor to obtain 0.17 g (14%) of methyl 1,5-diphenyl-2,3-diazabicyclo[3.1.0]hex-2-ene-endo-6-carboxylate (Vb) as a light vellow viscous oily substance, $R_{\rm f}$ 0.28. According to the ¹H NMR data, product Vb contained ~15% of exo isomer Va. Found. %: C 72.62: H 5.53: N 9.48. C₁₈H₁₆N₂O₂. Calculated, %: C 73.95; H 5.52; N 9.58.

Reaction of diazomethane with 2-methyl-3phenyl-2-cyclopropenecarboxylic acid (III). To a suspension of 0.8 g (4.6 mmol) of acid III in 15 ml of diethyl ether we added 52 ml of a 0.55 M solution of diazomethane (28.6 mmol) in diethyl ether. The mixture was kept for 15 days at -10° C in the dark. The solvent was removed under reduced pressure to obtain 1.03 g of a colorless solid which, according to the ¹H NMR data, was a mixture of compounds VIa, VIb, and VII at a ratio of 10:1:1. This mixture was dissolved in 10 ml of hexane-diethyl ether (1:1), the solution was kept for 3 h at -20° C, and the precipitate was filtered off. We thus isolated 0.72 g (68%) of methyl 5-methyl-1-phenyl-2,3-diazabicyclo[3.1.0]hex-2-ene-exo-6-carboxylate (VIa). mp 107°C. Found, %: C 67.99; H 6.17; N 12.17. C₁₃H₁₄N₂O₂. Calculated, %:

C 67.81; H 6.13; N 12.17. Removal of the solvent from the filtrate gave 0.31 g of a substance which contained compounds **VIa**, **VIb**, and **VII** (according to the ¹H NMR data). It was subjected to column chromatography on silica gel. We isolated (in the order of elution) 59 mg (5.6%) of compound **VII**, R_f 0.28 (hexane–diethyl ether, 1:1); an additional portion of **VIa**, 73 mg (6.9%), R_f 0.20; and compound **VIb**, 64 mg (6.1%), R_f 0.18.

Methyl 1-methyl-5-phenyl-2,3-diazabicyclo-[**3.1.0]hex-2-ene***-exo-***6-carboxylate (VII).** mp 65°C. Found, %: C 67.56; H 6.26; N 11.94. $C_{13}H_{14}N_2O_2$. Calculated, %: C 67.81; H 6.13; N 12.17.

Methyl 5-methyl-1-phenyl-2,3-diazabicyclo-[**3.1.0]hex-2-ene***-endo***-6-carboxylate** (**VIb).** mp 62°C. Found, %: C 67.79; H 6.11; N 12.13. $C_{13}H_{14}N_2O_2$. Calculated, %: C 67.81; H 6.13; N 12.17.

Isomerization of diazabicyclohexenes IV–VII to 1,4-dihydropyridazines VIII–XI (general procedure). To a solution of 1.0 mmol of diazabicyclohexene **IV–VII** in 3 ml of methanol we added 1 ml of a 0.2 M solution of sodium methoxide (0.2 mmol) in methanol. The mixture was stirred for 5 min at 20°C, diluted with 40 ml of diethyl ether, washed with water, dried over magnesium sulfate, and evaporated under reduced pressure.

Methyl 4,6-dimethyl-1,4-dihydropyridazine-5carboxylate (VIII) was obtained from diazabicyclohexene IV. Colorless oily substance, yield 84%, R_f 0.13 (hexane-diethyl ether, 1:1). Found, %: C 56.81; H 7.38; N 16.38. C₈H₁₂N₂O₂. Calculated, %: C 57.13; H 7.19; N 16.65.

Methyl 3,5-diphenyl-1,4-dihydropyridazine-4carboxylate (IX) was obtained from diazabicyclohexene Va. Yield 96%, mp 110–111°C; published data [4]: mp 106–109°C; R_f 0.21 (hexane–diethyl ether, 1:1). Found, %: C 73.90; H 5.52; N 9.32. C₁₈H₁₆N₂O₂. Calculated, %: C 75.95; H 5.52; N 9.58. The same product was formed by isomerization of compound Vb (according to the TLC data).

Methyl 5-methyl-3-phenyl-1,4-dihydropyridazine-4-carboxylate (X) was obtained from diazabicyclohexene VIa. Colorless oily substance, yield 91%, R_f 0.23 (hexane-diethyl ether, 1:1). Found, %: C 67.57; H 6.38; N 12.01. C₁₃H₁₄N₂O₂. Calculated, %: C 67.81; H 6.13; N 12.17. The same product was formed by isomerization of compound VIb (according to the TLC data). Methyl 3-methyl-5-phenyl-1,4-dihydropyridazine-4-carboxylate (XI) was obtained from diazabicyclohexene VII. Colorless oily substance, yield 78%, R_f 0.20 (hexane-diethyl ether, 1:2). Found, %: C 67.49; H 6.40; N 11.96. C₁₃H₁₄N₂O₂. Calculated, %: C 67.81; H 6.13; N 12.17.

Oxidation of 1,4-dihydropyridazines VIII–XI (general procedure). To a solution of 1 mmol of 1,4-dihydropyridazine **VIII–XI** in 5 ml of acetone we added a solution of 0.17 g (1.1 mmol) KMnO₄ in 2 ml of water. The mixture was stirred for 0.5 h and filtered, the filtrate was concentrated under reduced pressure, and the residue was purified by flash chromatography on silica gel.

Methyl 3,5-dimethylpyridazine-4-carboxylate (XII) was obtained from 1,4-dihydropyridazine VIII. Yield 77%, mp 43–44°C, R_f 0.11 (hexane–diethyl ether, 1:3). Found, %: C 57.71; H 6.06; N 16.54. C₈H₁₀N₂O₂. Calculated, %: C 57.81; H 6.07; N 16.86.

Methyl 3,5-diphenylpyridazine-4-carboxylate (XIII) was obtained from 1,4-dihydropyridazine IX. Yield 95%, mp 124–125°C, $R_{\rm f}$ 0.22 (hexane–diethyl ether, 1:2). Found, %: C 74.18; H 4.92; N 9.36. C₁₈H₁₄N₂O₂. Calculated, %: C 74.47; H 4.86; N 9.65.

Methyl 5-methyl-3-phenylpyridazine-4-carboxylate (XIV) was obtained from 1,4-dihydropyridazine X. Yield 86%, mp 47–48°C, R_f 0.15 (hexanediethyl ether, 1:2). Found, %: C 68.56; H 5.39; N 12.16. $C_{13}H_{12}N_2O_2$. Calculated, %: C 68.40; H 5.30; N 12.28.

Methyl 3-methyl-5-phenylpyridazine-4-carboxylate (XV) was obtained from 1,4-dihydropyridazine XI. Yield 74%, mp 60–61°C, R_f 0.17 (hexanediethyl ether, 1:2). Found, %: C 68.38; H 5.34; N 12.21. $C_{13}H_{12}N_2O_2$. Calculated, %: C 68.40; H 5.30; N 12.28.

The authors are grateful to V.A. Vasin (Mordovian University) for his help in the preparation of acid **I**.

REFERENCES

- 1. Wiberg, K.B., Angew. Chem., 1986, vol. 98, p. 312.
- Bolesov, I.G. and Plemenkov, V.V., Alifaticheskie diazosoedineniya v organicheskom sinteze. Mezhvuzovskii sbornik (Aliphatic Diazo Compounds in Organic Synthesis. An Interinstitution Collection), Leningrad: Leningr. Gos. Univ., 1985, p. 106; Baird, M.S., Top. Curr. Chem., 1987, vol. 144, p. 137.
- 3. Deem, M.L., Synthesis, 1982, p. 701.
- Komendantov, M.I. and Bekmukhametov, R.R., *Zh. Org. Khim.*, 1971, vol. 7, p. 423; Komendantov, M.I., Bekmukhametov, R.R., and Novinskii, V.G., *Zh. Org. Khim.*, 1976, vol. 12, p. 801.
- Methoden der organische Chemie. Houben-Weyl, De Meijere, A., Ed., Stuttgart: Georg Thieme, 1997, vol. E17a, p. 175.
- Baird, M.S. and Hussain, H.H., *Tetrahedron*, 1987, vol. 43, p. 215; Al Dullayymi, A.P. and Baird, M.S., *Tetrahedron*, 1998, vol. 54, p. 12897.
- Regitz, M., Welter, W., and Hartmann, A., *Chem. Ber.*, 1979, vol. 112, p. 2509; Heydt, H., Busch, K.H., and Regitz, M., *Justus Liebigs Ann. Chem.*, 1980, p. 590.
- Norden, W., Sander, V., and Weyerstahl, P., *Chem. Ber.*, 1983, vol. 116, p. 3097.
- Comprehensive Organic Chemistry, Barton, D. and Ollis, W.D., Eds., Oxford: Pergamon, 1979, vol. 4. Translated under the title Obshchaya organicheskaya khimiya, Moscow: Khimiya, 1985, vol. 8, chap. 16.2; The Chemistry of Heterocyclic Compounds, Castle, R.N., Ed., New York: Wiley, 1973, vol. 28.
- 10. Protopopova, M.N. and Shapiro, E.A., Usp. Khim., 1989, vol. 58, p. 1145.
- 11. Tsujimoto, T., Nomura, T., Iifuru, M., and Sasaki, Y., *Chem. Pharm. Bull.*, 1979, vol. 27, p. 1169.
- Zefirov, N.S., Averina, N.V., Boganov, A.M., Koz'min, A.S., Anufriev, V.S., Tatevskii, V.M., Yarovoi, S.S., Shchelokov, R.N., and Baranovskii, I.B., *Zh. Org. Khim.*, 1981, vol. 17, p. 1450.
- 13. D'yakonov, I.A. and Komendantov, M.I., Zh. Obshch. Khim., 1963, vol. 33, p. 2448.
- 14. D'yakonov, I.A. and Komendantov, M.I., Zh. Obshch. Khim., 1961, vol. 31, p. 3881.